▎ 摘 要
We report on the fabrication and electrical characterization of both single layer graphene micron-sized devices and nanoribbons on a hexagonal boron nitride substrate. We show that the micron-sized devices have significantly higher mobility and lower disorder density compared to devices fabricated on silicon dioxide substrate in agreement with previous findings. The transport characteristics of the reactive-ion-etched graphene nanoribbons on hexagonal boron nitride, however, appear to be very similar to those of ribbons on a silicon dioxide substrate. We perform a detailed study in order to highlight both similarities as well as differences. Our findings suggest that the edges have an important influence on transport in reactive-ion-etched graphene nanodevices. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765345]