• 文献标题:   Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance
  • 文献类型:   Article
  • 作  者:   OU XW, GAN L, LUO ZT
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY A
  • ISSN:   2050-7488 EI 2050-7496
  • 通讯作者地址:   Hong Kong Univ Sci Technol
  • 被引频次:   39
  • DOI:   10.1039/c4ta04502e
  • 出版年:   2014

▎ 摘  要

Droplet-shape hollow Ni3S2 nanoparticles, as well as corresponding partially nickel-filled nanoparticles, of narrow diameter distribution and uniform dispersion were successfully synthesized on two-dimensional graphene templates using a facile process with moderate reaction conditions. The nanoparticle composites were examined as electrochemical supercapacitor materials for energy storage application. We found that the shape of the nanoparticles is dominantly droplet-shape, with shape complementary to graphene support, which ensures good contact between them. The height of the nanoparticles increases linearly with the diameter with a coefficient of 0.44 from the fitting results, and the average height/diameter ratio of those nanoparticles is about 0.6, evidence that the nanoparticles have strong interaction with the graphene template, partially because of graphene-nickel ion interaction which ensures good surface wetting. Such a composite of droplet-shape hollow Ni3S2 nanoparticles grown on reduced graphene oxides (rGOs) exhibits a high specific capacitance of 1022.8 F g(-1) at scanning rate of 2 mV s(-1), with a value of 1015.6 F g(-1) obtained at a discharge current density of 1 A g(-1). Improvement of the rate capability can be further obtained by partially filling the hollow core with nickel metal, as 93.6% of the specific capacitance is retained with this structure by increasing the discharge density from 1 A g(-1) to 10 A g(-1). Our method provides a new approach for controlling the structure of graphene-based nanocomposites, with the potential for use in high performance supercapacitor applications.