• 文献标题:   The structural and electronic properties of metal atoms adsorbed on graphene
  • 文献类型:   Article
  • 作  者:   LIU WJ, ZHANG C, DENG MS, CAI SH
  • 作者关键词:  
  • 出版物名称:   PHYSICA ELOWDIMENSIONAL SYSTEMS NANOSTRUCTURES
  • ISSN:   1386-9477 EI 1873-1759
  • 通讯作者地址:   Guizhou Univ Finance Econ
  • 被引频次:   2
  • DOI:   10.1016/j.physe.2017.06.021
  • 出版年:   2017

▎ 摘  要

Based on density functional theory (DFT), we studied the structural and electronic properties of seven different metal atoms adsorbed on graphene (M + graphene). The geometries, adsorption energies, density of states (DOS), band structures, electronic dipole moment, magnetic moment and work function (WF) of M + graphene were calculated. The adsorption energies Delta E indicated that Li, Na, K, Ca and Fe adsorbed on graphene were tending to form stable structures. However, diffusion would occur on Cu and Ag adsorbed on graphene. In addition, the electronic structure near the Fermi level of graphene was significantly affected by Fe (Cu and Ag), compared with Li (Na, K and Ca). The electronic dipole moment and magnetic moment of M + graphene were sensitive to the adsorbed metal atoms. Moreover, we found electropositive (electronegative) adsorption can decrease (increase) the WF of the surface. Specially, the WF of Ag + graphene and Fe + graphene would increase because surface dipole moment make a contribution to electron.