▎ 摘 要
Van der Waals heterostructures stacked from different two- dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS2/graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by similar to 5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0 degrees/30 degrees. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS2/graphene heterojunction for electronics, especially on reducing the contact resistance in MoS2 devices as well as other TMDCs devices contacted by graphene.