• 文献标题:   Emergence of massless Dirac quasiparticles in correlated hydrogenated graphene with broken sublattice symmetry
  • 文献类型:   Article
  • 作  者:   SEKI K, SHIRAKAWA T, ZHANG QF, LI T, YUNOKI S
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   RIKEN
  • 被引频次:   7
  • DOI:   10.1103/PhysRevB.93.155419
  • 出版年:   2016

▎ 摘  要

Using the variational cluster approximation (VCA) and the cluster perturbation theory, we study the finite-temperature phase diagram of a half-depleted periodic Anderson model on the honeycomb lattice at half-filling for a model of graphone, i.e., single-side hydrogenated graphene. The ground state of this model is found to be ferromagnetic (FM) semimetal. The origin of this FM state is attributed to the instability of a flat band located at the Fermi energy in the noninteracting limit and is smoothly connected to the Lieb-Mattis-type ferromagnetism. The spin-wave dispersion in the FM state is linear in momentum at zero temperature but becomes quadratic at finite temperatures, implying that the FM state is fragile against thermal fluctuations. Indeed, our VCA calculations find that the paramagnetic (PM) state dominates the finite-temperature phase diagram. More surprisingly, we find that massless Dirac quasiparticles with the linear energy dispersion emerge at the Fermi energy upon introducing the electron correlation U at the impurity sites in the PM phase. The Dirac Fermi velocity is found to be highly correlated to the quasiparticle weight of the emergent massless Dirac quasiparticles at the Fermi energy and monotonically increases with U. These unexpected massless Dirac quasiparticles are also examined with the Hubbard-I approximation and the origin is discussed in terms of the spectral weight redistribution involving a large energy scale of U. Considering an effective quasiparticle Hamiltonian which reproduces the single-particle excitations obtained by the Hubbard-I approximation, we argue that the massless Dirac quasiparticles are protected by the electron correlation. Our finding therefore provides a unique example of the emergence of massless Dirac quasiparticles due to dynamical electron correlations without breaking any spatial symmetry. The experimental implications of our results for graphone as well as a graphene sheet on transition-metal substrates are also briefly discussed.