• 文献标题:   Facile synthesis of porous bimetallic alloyed PdAg nanoflowers supported on reduced graphene oxide for simultaneous detection of ascorbic acid, dopamine, and uric acid
  • 文献类型:   Article
  • 作  者:   CHEN LX, ZHENG JN, WANG AJ, WU LJ, CHEN JR, FENG JJ
  • 作者关键词:  
  • 出版物名称:   ANALYST
  • ISSN:   0003-2654 EI 1364-5528
  • 通讯作者地址:   Zhejiang Normal Univ
  • 被引频次:   65
  • DOI:   10.1039/c4an02200a
  • 出版年:   2015

▎ 摘  要

Porous bimetallic alloyed palladium silver (PdAg) nanoflowers supported on reduced graphene oxide (PdAg NFs/rGO) were prepared via a facile and simple in situ reduction process, with the assistance of cetyltrimethylammonium bromide as a structure directing agent. The as-prepared nanocomposite modified glassy carbon electrode (PdAg NFs/rGO/GCE) showed enhanced catalytic currents and enlarged peak potential separations for the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA) as compared to those of PdAg/GCE, rGO/GCE, commercial Pd/C/GCE, and bare GCE. The as-developed sensor can selectively detect AA, DA, and UA with a good anti-interference ability, wide concentration ranges of 1.0 mu M-2.1 mM, 0.4-96.0 mu M, and 1.0-150.0 mu M, respectively, together with low detection limits of 0.057, 0.048, and 0.081 mu M (S/N = 3), respectively. For simultaneous detection of AA, DA, and UA, the linear current-concentration responses were observed from 1.0 mu M-4.1 mM, 0.05-112.0 mu M, and 3.0-186.0 mu M, with the detection limits of 0.185, 0.017, and 0.654 mu M (S/N = 3), respectively.