• 文献标题:   Facile Fabrication of Au Nanoparticles/Tin Oxide/Reduced Graphene Oxide Ternary Nanocomposite and Its High-Performance SF6 Decomposition Components Sensing
  • 文献类型:   Article
  • 作  者:   PI SM, ZHANG XX, CUI H, CHEN DC, ZHANG GZ, XIAO S, TANG J
  • 作者关键词:   rgo, sf6 decomposition component, gas sensor, tin oxide, hybrid nanomaterial
  • 出版物名称:   FRONTIERS IN CHEMISTRY
  • ISSN:   2296-2646
  • 通讯作者地址:   Wuhan Univ
  • 被引频次:   0
  • DOI:   10.3389/fchem.2019.00476
  • 出版年:   2019

▎ 摘  要

A high-performance sensor for detecting SF6 decomposition components (H2S and SOF2) was fabricated via hydrothermal method using Au nanoparticles/tin oxide/reduced graphene oxide (AuNPs-SnO2-reduced graphene oxide [rGO]) hybrid nanomaterials. The sensor has gas-sensing properties that responded and recovered rapidly at a relatively low operating temperature. The structure and micromorphology of the prepared materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Raman spectroscopy, energy-dispersive spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The gas-sensing properties of AuNPs-SnO2-rGO hybrid materials were studied by exposure to target gases. Results showed that AuNPs-SnO2-rGO sensors had desirable response/recovery time. Compared with pure rGO (210/452 s, 396/748 s) and SnO2/rGO (308/448 s, 302/467 s), the response/recovery time ratios of AuNPs-SnO2-rGO sensors for 50 ppm H2S and 50 ppm SOF2 at 110 degrees C were 26/35 s and 41/68 s, respectively. Furthermore, the two direction-resistance changes of the AuNPs-SnO2-rGO sensor when exposed to H2S and SOF2 gas made this sensor a suitable candidate for selective detection of SF6 decomposition components. The enhanced sensing performance can be attributed to the heterojunctions with the highly conductive graphene, SnO2 films and Au nanoparticles.