• 文献标题:   Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant
  • 文献类型:   Article
  • 作  者:   SURIANI AB, NURHAFIZAH MD, MOHAMED A, MASROM AK, SAHAJWALLA V, JOSHI RK
  • 作者关键词:   nanocomposite, carbon electron microscopy, electrical conductivity, thermal propertie, capacitor
  • 出版物名称:   MATERIALS DESIGN
  • ISSN:   0264-1275 EI 1873-4197
  • 通讯作者地址:   Univ Pendidikan Sultan Idris
  • 被引频次:   19
  • DOI:   10.1016/j.matdes.2016.03.067
  • 出版年:   2016

▎ 摘  要

A custom-made surfactant called sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) was used to assist the dispersion of graphene oxide/natural rubber latex (GO/NRL) nanocomposites by the one-step method. NRL was intermixed in the electrolyte during the electrochemical exfoliation of the produced GO. The conductivity of the sample was measured by using a four-point probe measurement and was found to be 2.65 x 10(-4) S cm(-1). The tri-chain of the hyper-branched TC14 surfactant successfully improved the dispersions and conductivity of the GO/NRL nanocomposite. Cyclic voltammetry was employed to study the supercapacitor performance of the nanocomposite. A high capacitance value of 35 F g(-1) was measured from the sample at a scan rate of 100 mV s(-1). The use of low-surface-tension triple-tail TC14 can efficiently adsorb and give triple interactions between the GO and NRL matrix. Meanwhile, a close,comparison study of available commercial surfactant SDS in the fabrication of GO/NRL nanocomposites was also conducted with a similar preparation method. The conductivity obtained for SDS-GO/NRL nanocomposites was lower, which was found to be 2.59 x 10(-7) S cm(-1). Therefore, the introduction of TC14 surfactant can uncover the possibility for the development of low cost, conductive, environmentally friendly, and flexible GO/NRL nanocomposite-based electrode for supercapacitor application. (C) 2016 Elsevier Ltd. All rights reserved.