• 文献标题:   Catalytic investigation of PtPd and titanium oxide-loaded reduced graphene oxide for enhanced formic acid electrooxidation
  • 文献类型:   Article
  • 作  者:   PROMSAWAN N, UPPAMAHAI S, THEMSIRIMONGKON S, INCEESUNGVORN B, WAENKAEW P, OUNNUNKAD K, SAIPANYA S
  • 作者关键词:   ptbased alloy, reduced graphene oxide, titanium dioxide, formic acid oxidation, nanostructured catalyst
  • 出版物名称:   JOURNAL OF NANOPARTICLE RESEARCH
  • ISSN:   1388-0764 EI 1572-896X
  • 通讯作者地址:   Chiang Mai Univ
  • 被引频次:   2
  • DOI:   10.1007/s11051-018-4343-y
  • 出版年:   2018

▎ 摘  要

Preparation, characterization, and electrocatalytic study of the electrode-posited Pt and Pd (e.g., Pt and PtPd) catalysts on titanium dioxide (TiO2) modified reduced graphene oxide (rGO) support for formic acid oxidation were performed. The catalyst composites are labeled as xPt/rGO-TiO2, xPtyPd/rGO-TiO2, and yPd/rGO-TiO2 where x and y are cycle numbers of metal electrodeposition (x and y = 2-6). The characterizations of the catalysts were performed by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Small and dispersed metal nanoparticles are obtained on rGO-TiO2. The catalytic performances for formic acid oxidation were measured by cyclic voltammetry (CV) and chronoamperometry (CA). The electrocatalytic results reveal that the bimetallic 4Pt2Pd/rGO-TiO2 catalyst facilitates formic acid oxidations at the lowest potentials and generates the highest oxidation currents and also improves the highest CO oxidation compared to the monometallic 6Pt/rGOTiO(2) catalyst. According to the experimental data, the Pd and TiO2 enhance the electrocatalytic activity of the catalysts towards the formic acid oxidation; the improved catalytic performance of the prepared catalysts strongly relates to the high electrochemically active surface area (ECSA) investigated.