▎ 摘 要
Recently, hybridized monolayers consisting of hexagonal boron nitride (h-BN) phases inside a graphene layer have been synthesized and shown to be an effective way of opening band gap in graphene monolayers (Ci et al. in Nat Mater 9(5):430-435, 2010). In this paper, we report a first-principles density functional theory study of the h-BN domain size effect on the elastic properties of graphene/boron nitride hybrid monolayers (h-BNC). We found that both in-plane stiffness and longitudinal sound velocity of h-BNC linearly decrease with h-BN concentration. Our results could be used for the design of future graphene-based nanodevices of surface acoustic wave sensors and waveguides.