▎ 摘 要
A device of graphene nanoplatelet-based diffusion gradients in thin-films (G-DGT) was developed for in situ sampling of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) in aquatic environment. The accumulation of antibiotics in a synthetic solution by the proposed G-DGT was consistent with the theoretical curves predicted by the DGT equation. The values of the detection and quantification limits of G-DGT using high-performance liquid chromatography over the deployment time of 7 days were at the level of mu g L-1 for the three antibiotics. The performance of the proposed G-DGT was unaffected by pH (3-9) and ionic strength (0.001-0.7 mol L-1 NaNO3). Fulvic acid did not significantly interfere with the performance of the proposed G-DGT device when the mass ratios between the three antibiotics and fulvic acid were within the range of 1:10-1:100. Humic acid had a significant effect on the performance of the proposed G-DGT for the sampling of the three antibiotics due to strong complexation and coprecipitation between the antibiotics and humic acid. The proposed G-DGT was used for the in situ sampling in spiked freshwaters and livestock culture wastewater and exhibited good precision and accuracy without notable interference from the matrices.