▎ 摘 要
Sub-nanometer armchair graphene nanoribbons (GNRs) with moderate band gap have great potential towards novel nanodevices. GNRs can be synthesized in the confined tubular space of single-walled carbon nanotubes (SWCNTs), in which precursor molecules have been specifically designed to form the GNRs with certain width and edge. However, it is still unexplored how the diameter and metallicity of SWCNTs influence the synthesis of the GNRs. Herein, we applied a series of SWCNTs with different average diameters to study the diameter-dependent synthesis of GNRs. By using Raman spectroscopy and transmission electron microscopy, we found that the width of the GNRs can be tailored by the diameter of the SWCNTs. Especially, the SWCNTs with average diameter of 1.3 nm produced 6 and 7 armchair GNRs with the highest yield, which can be well explained by considering the width of the GNRs and van der Waals radius of hydrogen and carbon atoms. In addition, semiconducting and metallic SWCNTs produced GNRs with different yields, which could attribute to different diameter distributions and density of defects. These results enable the possibility of a high-yield production of certain armchair graphene nanoribbons in large scale, which would benefit future applications as semiconductor with sub-nanometer in width.