• 文献标题:   Solid-State Carbon-Doped GaN Schottky Diodes by Controlling Dissociation of the Graphene Interlayer with a Sputtered AlN Capping Layer
  • 文献类型:   Article
  • 作  者:   KE WC, TESFAY ST, SEONG TY, LIANG ZY, CHIANG CY, CHEN CY, SON W, CHANG KJ, LIN JC
  • 作者关键词:   carbondoped gan, graphene, aln capping, threading dislocation, schottky diode
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Natl Taiwan Univ Sci Technol
  • 被引频次:   0
  • DOI:   10.1021/acsami.9b18976
  • 出版年:   2019

▎ 摘  要

Carbon-doped GaN (GaN:C) Schottky diodes are prepared by controlling the destruction status of the graphene interlayer (GI) on the substrate. The GI without a sputtered AlN capping layer (CL) was destroyed because of ammonia precursor etching behavior in a high-temperature epitaxy. The damaged GI, like nanographite as a solid-state carbon doping source, incorporated the epitaxial growth of the GaN layer. The secondary ion mass spectroscopy depth profile indicated that the carbon content in the GaN layer can be tuned further by optimizing the sputtering temperature of AlN CL because of the better capping ability of high crystalline quality AlN CL on GI being achieved at higher temperature. The edge-type threading dislocation density and carbon concentration of the GaN:C layer with an embedded 550 degrees C-grown AlN CL on a GI substrate can be significantly reduced to 2.28 x 10(9) cm(-2) and similar to 2.88 x 10(18) cm(-3), respectively. Thus, a Ni-based Schottky diode with an ideality factor of 1.5 and a barrier height of 0.72 eV was realized on GaN:C. The series resistance increased from 28 kCA at 303 K to 113 k Omega at 473 K, while the positive temperature coefficient (PTC) of series resistance was ascribed to the carbon doping that induced the compensation effect and lattice scattering effect. The decrease of the donor concentration was confirmed by temperature dependent capacitance-voltage (C-V-T) measurement. The PTC characteristic of GaN:C Schottky diodes created by dissociating the GI as a carbon doping source should allow for the future use of high-voltage Schottky diodes in parallel, especially in high-temperature environments.