• 文献标题:   Synthesis of polymer-functionalized nanoscale graphene oxide with different surface charge and its cellular uptake, biosafety and immune responses in Raw264.7 macrophages
  • 文献类型:   Article
  • 作  者:   WANG B, SU XP, LIANG JL, YANG LF, HU QL, SHAN XY, WAN JM, HU ZW
  • 作者关键词:   gopei, gopeg, raw264.7 cell, cellular uptake, cytotoxicity, immune response
  • 出版物名称:   MATERIALS SCIENCE ENGINEERING CMATERIALS FOR BIOLOGICAL APPLICATIONS
  • ISSN:   0928-4931 EI 1873-0191
  • 通讯作者地址:   Zhejiang Sci Tech Univ
  • 被引频次:   4
  • DOI:   10.1016/j.msec.2018.04.096
  • 出版年:   2018

▎ 摘  要

Polymer-functionalized graphene oxide (GO) has superior properties such as large surface area, extraordinary mechanical strength, high carrier mobility, good stability in physiological media and low cytotoxicity, making it an attractive material for drug and gene delivery. Herein, we successfully synthesized GO with an average size of 168.3 nm by a modified Hummers' method. Branched polyethylenimine (PEI) and 6-armed polyethylene glycol (PEG) functionalized GO complexes (GO-PEI and GO-PEG) with different zeta potentials of 47.2 mV and -43.0 mV, respectively, were successfully synthesized through amide linkages between the COOH groups of GO and the NH2 groups of PEI and PEG. Then, the interactions between GO-PEI and GO-PEG complexes and Raw264.7 mouse monocyte-macrophage cells were investigated. The GO-PEI and GO-PEG complexes could both be internalized by Raw264.7 cells. However, compared with the GO-PEG complex, the GO-PEI complex showed higher intracellular delivery efficiency in Raw264.7 cells. Moreover, it was found that the GO-PEI complex not only gathered in endosomes but also in the cytoplasm, whereas GO-PEG gathered in endosomes only. The MTT tests showed that both GO-PEI and GO-PEG complexes exhibited very low cytotoxicity towards Raw264.7 cells when at a low concentration. The cellular immune response test demonstrated the GO-PEG complex enhanced the secretion of IL-6, illustrating it was more stimulus towards macrophage cells. The above results indicated that the GO-PEI complex, with a positive surface charge, demonstrated better potential to be used in effective drug and gene delivery.