▎ 摘 要
Two graphene oxide (GO)-based nanohybrid materials possessing covalent linkages to axially-coordinated tetraphenylporphyrin (TPP), GO-TPP, were prepared and were characterized by Fourier transform infrared (FT-IR), Ultraviolet-visible (UV-Vis) absorption, steady state fluorescence, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), thermogravimetric analysis (TGA), elemental analysis and Raman spectroscopic techniques. The nonlinear optical properties and optical limiting performance of GO, GO-TPP nanohybrids and the free porphyrins dihydroxotin(IV) tetraphenylporphyrin (SnTPP) and the phosphorus-cored porphyrin (PTPP) were investigated using nanosecond and picosecond Z-scan measurements at 532 nm. At the identical mass concentration of 0.2 mg mL(-1), GO-TPP nanohybrids exhibited enhanced nonlinear optical properties and optical limiting performance, ascribed to a combination of nonlinear scattering and/or two-photon absorption with reverse saturable absorption, and the photo-induced electron or energy transfer from the electron-donor porphyrin moiety to the acceptor graphene. (C) 2012 Elsevier Ltd. All rights reserved.