• 文献标题:   Controlled Nitrogen Doping of Graphene Quantum Dots through Laser Ablation in Aqueous Solutions for Photoluminescence and Electrocatalytic Applications
  • 文献类型:   Article
  • 作  者:   CALABRO RL, YANG DS, KIM DY
  • 作者关键词:   graphene quantum dot, laser ablation in liquid, photoluminescence, lifetime, oxygen reduction reaction, electrocatalysi
  • 出版物名称:   ACS APPLIED NANO MATERIALS
  • ISSN:   2574-0970
  • 通讯作者地址:   Univ Kentucky
  • 被引频次:   5
  • DOI:   10.1021/acsanm.9b01433
  • 出版年:   2019

▎ 摘  要

Nitrogen-doped graphene quantum dots (N-GQDs) have promising applications in catalysis and photoluminescence, but many existing synthetic methods require uses of harsh chemicals, long reaction times, and complicated purification steps and have poor control over the surface functional groups. Laser ablation in liquid (LAL) is a promising alternative method to prepare nanomaterials because of its fast production, use of fewer chemicals, simple purification, and fewer byproducts and its control of the product by precise tuning of laser ablation parameters. We report the use of LAL to produce N-GQDs from carbon nano-onions in aqueous solutions of ammonia, ethylenediamine, and pyridine. The choice of these dopants allowed for tuning the overall nitrogen content and the distribution of functional groups that led to the control over the photoluminescence emission wavelengths and lifetimes. High concentrations of amine groups tended to red-shift emission and exhibit shorter lifetimes, whereas pyridinic groups would blue-shift the emission and exhibit longer lifetimes. The N-GQDs also showed a promising performance as electrocatalysts for reducing oxygen to hydrogen peroxide, an important chemical widely used in industrial applications. The N-GQDs exhibited both low overpotentials and high selectivity for a two-electron oxygen reduction pathway.