• 文献标题:   Effect of Interfacial Interaction on the Conformational Variation of Poly(vinylidene fluoride) (PVDF) Chains in PVDF/Graphene Oxide (GO) Nanocomposite Fibers and Corresponding Mechanical Properties
  • 文献类型:   Article
  • 作  者:   LEE JE, EOM Y, SHIN YE, HWANG SH, KO HH, CHAE HG
  • 作者关键词:   poly vinylidene fluoride, graphene oxide, conformation, toughnes, nanocomposite
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Ulsan Natl Inst Sci Technol
  • 被引频次:   9
  • DOI:   10.1021/acsami.8b22586
  • 出版年:   2019

▎ 摘  要

Poly(vinylidene fluoride) (PVDF)/graphene oxide (GO) nanocomposite fibers were dry-jet wet spun at the GO concentrations of 0, 1, and 2 wt % with respect to the polymer. The as-spun fibers were drawn in the draw ratio (DR) range of 2-6.5, and the correlation between the PVDF chain conformation and the mechanical properties of the fibers upon drawing has been studied by two-dimensional correlation spectroscopy of Fourier-transformed infrared, wide-angle X-ray diffraction, differential scanning calorimetry, and tensile testing. The PVDF/GO nanocomposite fibers exhibited that the mobile PVDF crystals due to the conformational defects and kinks were nucleated because of the polar interaction between PVDF chains and functional groups of GO, whereas the control PVDF fiber showed the conventional conversion of crystal polymorphs (alpha and gamma phases to beta phase). As a result, the nanocomposite fiber showed dramatically improved toughness (enhanced by 1123% at a DR of 2 and 120% at a DR of 6.5) as compared to that of the control fiber. Furthermore, the tensile strength and modulus of the PVDF/GO (2 wt %) fiber were 394 MPa and 4.6 GPa, respectively, whereas those of the control PVDF fiber were 295 MPa and 3.9 GPa, respectively.