▎ 摘 要
Electrochemical bubbling transfer of graphene is a technique with high industrial potential due to its scalability, time- and cost-effectiveness, and ecofriendliness. However, the graphene is often damaged due to the turbulence and the trapped bubbles formed by the direct H2O and H+ permeation through the supporting polymer. We invent a graphene mechanical support of polyethylene terephthalate foil/plastic frame/poly(methyl methacrylate) sandwich, with an encapsulated air gap as the permeation stopping layer. The graphene damage is drastically reduced, as confirmed by the morphology and structural and electrical characterization, ultimately improving the controllability/reproducibility of the bubbling transfer of graphene and other two-dimensional materials.