▎ 摘 要
A promising route for the synthesis of large-area graphene, suitable for standard device fabrication techniques, is the sublimation of silicon from silicon carbide at elevated temperatures (>1200 degrees C). Previous reports suggest that graphene nucleates along the (1 (1) over bar 0n) plane, known as terrace step edges, on the silicon carbide surface. However, to date, a fundamental understanding of the nucleation of graphene on silicon carbide is lacking. We provide the first direct evidence that nucleation of epitaxial graphene on silicon carbide occurs along the (1 (1) over bar 0n) plane and show that the nucleated graphene quality improves as the synthesis temperature is increased. Additionally, we find that graphene on the (1 (1) over bar 0n) plane can be significantly thicker than its (0001) counterpart and appears not to have a thickness limit. Finally, we find that graphene along the (1 (1) over bar 0n) plane can contain a high density of structural defects, often the result of the underlying substrate, which will undoubtedly degrade the electronic properties of the material. Addressing the presence of non-uniform graphene that may contain structural defects at terrace step edges will be key to the development of a large-scale graphene technology derived from silicon carbide.