• 文献标题:   Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection
  • 文献类型:   Article
  • 作  者:   PARK M, HA HD, KIM YT, JUNG JH, KIM SH, KIM DH, SEO TS
  • 作者关键词:  
  • 出版物名称:   ANALYTICAL CHEMISTRY
  • ISSN:   0003-2700 EI 1520-6882
  • 通讯作者地址:   Korea Adv Inst Sci Technol
  • 被引频次:   35
  • DOI:   10.1021/acs.analchem.5b02907
  • 出版年:   2015

▎ 摘  要

A novel trace lead ion (Pb2+) detection platform by combining a microfluidic sample pretreatment device with a DNA aptamer linked photoluminescent graphene oxide quantum dot (GOQD) sensor was proposed. The multilayered microdevice included a microchamber which was packed with cation exchange resins for preconcentrating metal ions. The sample loading and recovery were automatically actuated by a peristaltic polydimethylsiloxane micropump with a flow rate of 84 mu L/min. Effects of the micropump actuation time, metal ion concentration, pH, and the volumes of the sample and eluent on the metal ion capture and preconcentration efficiency were investigated on a chip. The Pb2+ samples whose concentrations ranged from 0.48 nM to 1.2 mu M were successfully recovered with a preconcentration factor value between 4 and 5. Then, the preconcentrated metal ions were quantitatively analyzed with a DNA aptamer modified GOQD. The DNA aptamer on the GOQD specifically captured the target Pb2+ which can induce electron transfer from GOQD to Pb2+ upon UV irradiation, thereby resulting in the fluorescence quenching of the GOQD. The disturbing effect of foreign anions on the Pb2+ detection and the spiked Pb2+ real samples were also analyzed. The proposed GOQD metal ion sensor exhibited highly sensitive Pb2+ detection with a detection limit of 0.64 nM and a dynamic range from 1 to 1000 nM. The on-chip preconcentration of the trace metal ions from a large-volume sample followed by the metal ion detection by the fluorescent GOQD sensor can provide an advanced platform for on-site water pollution screening.