▎ 摘 要
Being impermeable to all gases, graphene has been proposed as an effective ultrathin barrier film and protective coating. However, here it is shown how the gastight property of graphene-based coatings may indirectly lead to their catastrophic failure under certain conditions. When nickel coated with thick, high-quality chemical vapor deposited multilayered graphene is exposed to acidic solutions, a dramatic evolution of gas is observed at the coating-substrate interface. The gas bubbles grow and merge, eventually rupturing and delaminating the coating. This behavior, attributed to cathodic hydrogen evolution, can also occur spontaneously on a range of other technologically important metals and alloys based on iron, zinc, aluminum and manganese; this makes these findings relevant for practical applications of graphene-based coatings.