• 文献标题:   Three-dimensional multimodal porous graphene-carbonized wood for highly efficient solar steam generation
  • 文献类型:   Article
  • 作  者:   BANG J, MOON IK, OH J
  • 作者关键词:   solarheating interfacial evaporation, carbonized woodbased photothermal system, porous graphene, solar absorber, hydrophobichydrophilic structure
  • 出版物名称:   SUSTAINABLE ENERGY TECHNOLOGIES ASSESSMENTS
  • ISSN:   2213-1388 EI 2213-1396
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.seta.2023.103199 EA APR 2023
  • 出版年:   2023

▎ 摘  要

Recently, solar steam generation systems have become a promising solar energy technology that can alleviate the energy crisis and reduce water pollution. However, because of weak solar radiation energy, rapid heat loss, and negative environmental impacts, there are still numerous challenges that must be overcome before solar steam generation systems can be used for practical energy utilization. Inspired by natural tree transpiration, this paper reports a 3D carbonized wood (hydrophilic)-based photothermal system coated with 2D porous reduced graphene oxide (hydrophobic) to promote solar steam generation. Wood with vertically aligned microchannels and high hydrophilicity is used to efficiently pump water, which is then spread to a 2D porous reduced graphene oxide layer with a sufficient evaporation surface. The unique 3D micro-sized water reservoirs formed between the wood and reduced graphene oxide maximize the thermal energy use of the graphene layer by preventing heat loss from its transference to the water and reducing light reflection. The evaporation rate and solar energy conversion efficiency were 1.492 kg center dot m(-2)center dot h(-1) and 94.7% under 1 sun illumination, respectively. Moreover, our solar steam evaporator maintained its original evaporation rate after 20 h. This work provides new insights into the structural design for highly efficient solar steam generation devices.