• 文献标题:   Graphene Oxide Nanoscale Platform Enhances the Anti-Cancer Properties of Bortezomib in Glioblastoma Models
  • 文献类型:   Article
  • 作  者:   SHARP PS, STYLIANOU M, ARELLANO LM, NEVES JC, GRAVAGNUOLO AM, DODD A, BARR K, LOZANO N, KISBY T, KOSTARELOS K
  • 作者关键词:   2d material, chemotherapy, glioblastoma, graphene, nanomedicine
  • 出版物名称:   ADVANCED HEALTHCARE MATERIALS
  • ISSN:   2192-2640 EI 2192-2659
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1002/adhm.202201968 EA NOV 2022
  • 出版年:   2023

▎ 摘  要

Graphene-based 2D nanomaterials possess unique physicochemical characteristics which can be utilized in various biomedical applications, including the transport and presentation of chemotherapeutic agents. In glioblastoma multiforme (GBM), intratumorally administered thin graphene oxide (GO) nanosheets demonstrate a widespread distribution throughout the tumor volume without impact on tumor growth, nor spread into normal brain tissue. Such intratumoral localization and distribution can offer multiple opportunities for treatment and modulation of the GBM microenvironment. Here, the kinetics of GO nanosheet distribution in orthotopic GBM mouse models is described and a novel nano-chemotherapeutic approach utilizing thin GO sheets as platforms to non-covalently complex a proteasome inhibitor, bortezomib (BTZ), is rationally designed. Through the characterization of the GO:BTZ complexes, a high loading capacity of the small molecule on the GO surface with sustained BTZ biological activity in vitro is demonstrated. In vivo, a single low-volume intratumoral administration of GO:BTZ complex shows an enhanced cytotoxic effect compared to free drug in two orthotopic GBM mouse models. This study provides evidence of the potential that thin and small GO sheets hold as flat nanoscale platforms for GBM treatment by increasing the bioavailable drug concentration locally, leading to an enhanced therapeutic effect.