▎ 摘 要
We develop an original phase-coupled method to realize multispectral metamaterial near-unity absorbers based on spatially separated graphene ribbon arrays with mid-infrared plasmonic resonances. The results both from the coupled-mode theory and finite-difference time-domain simulations reveal that in addition to the single-band absorption enabled by the bi-layer identical ribbon arrays, the outstanding dual-band perfect absorption is observed with the change in the phase between bi-layer ribbons only by varying the spacer thickness. The spectral positions of absorption peaks are tuned handily by small changes in ribbon widths and chemical potentials of graphene. Moreover, the tripleband absorber is achieved handily by the same principle and such absorbers are robust for nornormal incident angles. The transfer matrix method is also utilized to uncover further the underlying physics of the phased-coupled-induced multispectral absorbers. Theoretical analysis are in excellent agreement with numerical calculations. The phase-coupled method thus provides new opportunities for obtaining multi-channel metamaterial perfect absorbers. (C) 2018 Elsevier Ltd. All rights reserved.