• 文献标题:   Hierarchical Co3O4 decorated nitrogen-doped graphene oxide nanosheets for energy storage and gas sensing applications
  • 文献类型:   Article
  • 作  者:   RAMESH S, KARUPPASAMY K, VIKRAMAN D, KIM E, SANJEEB L, LEE YJ, KIM HS, KIM JH, KIM HS
  • 作者关键词:   composite, cobalt oxide, graphene oxide, nitrogen doping, supercapacitor, gas sensor
  • 出版物名称:   JOURNAL OF INDUSTRIAL ENGINEERING CHEMISTRY
  • ISSN:   1226-086X EI 1876-794X
  • 通讯作者地址:  
  • 被引频次:   13
  • DOI:   10.1016/j.jiec.2021.06.007 EA JUL 2021
  • 出版年:   2021

▎ 摘  要

Nano-sized cobalt oxide decorated nitrogen-doped graphene oxide (Co3O4@NGO) composite was produced by a feasible and cost-effective hydrothermal route for electrochemical supercapacitors and gas sensor applications. The composite materials formation was ascertained by Raman spectroscopy, X-ray diffraction, and X-ray photo electron spectroscopy analyses. Field emission scanning electron microscopy (FE-SEM) and field emission transmission electron microscopy (FE-TEM) results explored the controlled nanoscale-sized sheet-like morphology for the prepared composite materials. Electrochemical storage properties were studied by cyclic voltammetry (CV), galvanostatic charge-discharge process (GCD), and electrochemical impedance spectroscopy analyses using three-electrode configuration with 3 M KOH electrolyte. The observed results showed similar to 466 F/g specific capacitance at a current density of 1 A/g for Co3O4@NGO composite structure with the capacity retention of 96 % after 5000 cycles. Further, the synthesized Co3O4@NGO composite revealed improved detection response, cyclability, and linearity for dimethyl methyl phosphonate vapor gas sensing. The synthesized composite also demonstrated excellent selectivity, stability, sensitivity, and rapid response time. (C) 2021 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.