• 文献标题:   Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell
  • 文献类型:   Article
  • 作  者:   YAZDI AA, XU J
  • 作者关键词:   enzymatic fuel cell, nitrogendoped graphene, reduced graphene oxide, catalystfree synthesi
  • 出版物名称:   FRONTIERS IN ENERGY
  • ISSN:   2095-1701 EI 2095-1698
  • 通讯作者地址:   Univ Illinois
  • 被引频次:   4
  • DOI:   10.1007/s11708-018-0529-3
  • 出版年:   2018

▎ 摘  要

Heteroatom-doping of pristine graphene is an effective route for tailoring new characteristics in terms of catalytic performance which opens up potentials for new applications in energy conversion and storage devices. Nitrogen-doped graphene (N-graphene), for instance, has shown excellent performance in many electrochemical systems involving oxygen reduction reaction (ORR), and more recently glucose oxidation. Owing to the excellent H2O2 sensitivity of N-graphene, the development of highly sensitive and fast-response enzymatic biosensors is made possible. However, a question that needs to be addressed is whether or not improving the anodic response to glucose detection leads to a higher overall performance of enzymatic biofuel cell (eBFC). Thus, here we first synthesized N-graphene via a catalyst-free single-step thermal process, and made use of it as the biocatalyst support in a membraneless eBFC to identify its role in altering the performance characteristics. Our findings demonstrate that the electron accepting nitrogen sites in the graphene structure enhances the electron transfer efficiency between the mediator (redox polymer), redox active site of the enzymes, and electrode surface. Moreover, the best performance in terms of power output and current density of eBFCs was observed when the bioanode was modified with highly doped N-graphene.