• 文献标题:   High performance electrocatalysts supported on graphene based hybrids for polymer electrolyte membrane fuel cells
  • 文献类型:   Article
  • 作  者:   KAPLAN BY, HAGHMORADI N, BICER E, MERINO C, GURSEL SA
  • 作者关键词:   graphene, hybrid catalyst support, pt nanoparticle, electrocatalyst, pem fuel cell
  • 出版物名称:   INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
  • ISSN:   0360-3199 EI 1879-3487
  • 通讯作者地址:   Sabanci Univ
  • 被引频次:   3
  • DOI:   10.1016/j.ijhydene.2018.10.222
  • 出版年:   2018

▎ 摘  要

In this study, new electrocatalysts for PEM fuel cells, based on Pt nanoparticles supported on hybrid carbon support networks comprising reduced graphene oxide (rGO) and carbon black (CB) at varying ratios, were designed and prepared by means of a rapid and efficient microwave-assisted synthesis method. Resultant catalysts were characterized ex-situ for their structure, morphology, electrocatalytic activity. In addition, membrane-electrode assemblies (MEAs) fabricated using resultant electrocatalysts and evaluated in-situ for their fuel cell performance and impedance characteristics. TEM studies showed that Pt nanoparticles were homogeneously decorated on rGO and rGO-CB hybrids while they had bigger size and partially agglomerated distribution on CB. The electrocatalyst, supported on GO-CB hybrid containing 75% GO (HE75), possessed very encouraging results in terms of Pt particle size and dispersion, catalytic activity towards HOR and ORR, and fuel cell performance. The maximum power density of 1090 mW cm(-2) was achieved with MEA (Pt loading of 0.4 mg cm(-2)) based on electrocatalyst, HE75. Therefore, the resultant hybrid demonstrated higher Pt utilization with enhanced FC performance output. Our results, revealing excellent attributes of hybrid supported electrocatalysts, can be ascribed to the role of CB preventing rGO sheets from restacking, effectively modifying the array of graphene and providing more available active catalyst sites in the electrocatalyst material. (C) 2018 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.