• 文献标题:   SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability
  • 文献类型:   Article
  • 作  者:   LI L, KOVALCHUK A, TOUR JM
  • 作者关键词:   lithium ion battery, tin oxide, graphene oxide nanoribbon, energy storage
  • 出版物名称:   NANO RESEARCH
  • ISSN:   1998-0124 EI 1998-0000
  • 通讯作者地址:   Rice Univ
  • 被引频次:   58
  • DOI:   10.1007/s12274-014-0496-x
  • 出版年:   2014

▎ 摘  要

A nanocomposite material of SnO2-reduced graphene oxide nanoribbons has been developed. In this composite, the reduced graphene oxide nanoribbons are uniformly coated by nanosized SnO2 that formed a thin layer of SnO2 on the surface. When used as anodes in lithium ion batteries, the composite shows outstanding electrochemical performance with the high reversible discharge capacity of 1,027 mAh/g at 0.1 A/g after 165 cycles and 640 mAh/g at 3.0 A/g after 160 cycles with current rates varying from 0.1 to 3.0 A/g and no capacity decay after 600 cycles compared to the second cycle at a current density of 1.0 A/g. The high reversible capacity, good rate performance and excellent cycling stability of the composite are due to the synergistic combination of electrically conductive reduced graphene oxide nanoribbons and SnO2. The method developed here is practical for the large-scale development of anode materials for lithium ion batteries.