• 文献标题:   Electronic confinement in quantum dots of twisted bilayer graphene
  • 文献类型:   Article
  • 作  者:   ZHOU XF, LIU YW, YAN HY, FU ZQ, LIU HW, HE L
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1103/PhysRevB.104.235417
  • 出版年:   2021

▎ 摘  要

Electronic properties of quantum dots (QDs) depend sensitively on their parent materials. Therefore, confined electronic states in graphene QDs (GQDs) of monolayer and Bernal-stacked bilayer graphene are quite different. Twisted bilayer graphene (TBG) is distinct from monolayer and Bernal-stacked bilayer graphene because of the new degree of freedom: twist angle. In the past few years, numerous efforts have been made to realize the GQDs of monolayer and Bernal-stacked bilayer graphene and achieved great success. Thus far, however, strategies for realizing GQDs of TBG have been elusive. Here, we demonstrate a general approach for fabricating stationary GQDs of TBG by introducing nanoscale p-n junctions with sharp boundaries in the TBG. We verify the confinement of low-energy massless Dirac fermions via whispering-gallery modes in the GQDs of TBG. Unexpectedly, electronic states around van Hove singularities of the TBG are also strongly modified around the GQDs. Such a feature is attributed to spatial variation of the interlayer coupling in the TBG induced by the GQDs.