• 文献标题:   Copper nanoparticle/graphene oxide/single wall carbon nanotube hybrid materials as electrochemical sensing platform for nonenzymatic glucose detection
  • 文献类型:   Article
  • 作  者:   YANG TT, XU JK, LU LM, ZHU XF, GAO YS, XING HK, YU YF, DING WC, LIU Z
  • 作者关键词:   copper nanoparticle, graphene oxide, single wall carbon nanotube, nonenzymatic sensor
  • 出版物名称:   JOURNAL OF ELECTROANALYTICAL CHEMISTRY
  • ISSN:   1572-6657 EI 1873-2569
  • 通讯作者地址:   Jiangxi Sci Technol Normal Univ
  • 被引频次:   28
  • DOI:   10.1016/j.jelechem.2015.12.015
  • 出版年:   2016

▎ 摘  要

Cu nanoparticle/graphene oxide/single walled carbon nanotube (CuNP/GO/SWCNT) composites were prepared by a facile electrodeposition method and used for constructing nonenzymatic glucose sensor. Scanning electron microscopy (SEM) and Raman spectroscopy were employed to characterize the morphology and structures of the samples. The electrocatalytic performance of CuNP/GO/SWCNT composites towards glucose oxidation was studied by cyclic voltammetry (CV) and current-time measurements. Electrochemical results indicated that CuNP/GO/SWCNT electrode exhibited a higher electrocatalytic activity towards the oxidation of glucose than CuNP, CuNP/G0 and CuNP/SWCNT electrodes. This was because the GO/SWCNT composite as substrate material not only possessed excellent conductivity, but also provided large surface area for the high loading of the CuNPs. Meanwhile, the good dispersibility, independent and multi-layer structure of CuNP, could enhance the charge transport properties, and afford more active sites for the catalytic oxidation of glucose. Under the optimized conditions, the sensor showed a high sensitivity of up to 930.07 mu A mM(-1) cm(-2), with a wide linear range of 1 mu M to 4.538 mM and a low detection limit of 0.34 mu M (S/N = 3). It also exhibited excellent stability, reproducibility, selectivity, and reliable measurement in real human blood samples. All of these excellent properties made the CuNP/GO/SWCNT composite material promising for the development of effective nonenzymatic glucose sensors. (C) 2015 Elsevier B.V. All rights reserved.