▎ 摘 要
Surface oxidized iron-nickel nanorods coupling with reduced graphene architectures (FeNi-O-rGA) are successfully constructed via hydrothermal, freeze-drying, and thermal activation approaches. The hierarchical structure can provide lots of pathways for fast ion diffusion and charge transfer, and expose abundant catalytic sites. Meanwhile, the activity of FeNi-O-rGA is boosted by the optimized metaloxygen bond strength in FeNi3 alloys. Partial oxidized FeNi nanorods are strongly coupled with rGA by the formation of metal-O-C bonds, which can impede the aggregation of FeNi3 alloys and increase the utilization of active sites. The special structure and partially oxidized FeNi nanorods for FeNi-O-rGA can result in excellent OER activity and catalytic stability. Only 215 mV of overpotential is required to drive the current density of 10 mA/cm(2) as well as the Tafel slope of 50.9 mV/dec in 1 mol/L KOH. The change of surface chemistry of FeNi-O-rGA is confirmed by XPS after the OER test, which indicates the highly catalytic stability of FeNi-O-rGA due to the formation of intermediate metal oxyhydroxide. (C) 2021 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.