• 文献标题:   Rewiring the microbe-electrode interfaces with biologically reduced graphene oxide for improved bioelectrocatalysis
  • 文献类型:   Article
  • 作  者:   RATHINAM NK, BERCHMANS S, SANI RK, SALEM DR
  • 作者关键词:   bioelectrochemical system, reduced graphene oxide, biocompatibility, bioelectrocatalysi, current density, electron transfer rate
  • 出版物名称:   BIORESOURCE TECHNOLOGY
  • ISSN:   0960-8524 EI 1873-2976
  • 通讯作者地址:   South Dakota Sch Mines Technol
  • 被引频次:   3
  • DOI:   10.1016/j.biortech.2018.02.001
  • 出版年:   2018

▎ 摘  要

The aim of this work was to study biologically reduced graphene oxide (RGO) for engineering the surface architecture of the bioelectrodes to improve the performance of Bioelectrochemical System (BES). Gluconobacter roseus mediates the reduction of graphene oxide (GO). The RGO modified bioelectrodes produced a current density of 1 mA/cm(2) and 0.69 mA/cm(2) with ethanol and glucose as substrates, respectively. The current density of RGO modified electrodes was nearly 10-times higher than the controls. This study, for the first time, reports a new strategy to improve the yield as well as efficiency of the BES by wrapping and wiring the electroactive microorganisms to the electrode surfaces using RGO. This innovative wrapping approach will decrease the loss of electrons in the microbe-electrolyte interfaces as well as increase the electron transfer rates at the microorganism-electrode interfaces.