▎ 摘 要
We report the large nonlinear response and ultrafast carrier relaxation dynamics of a graphene-Bi2Te3 heterostructure produced by two-step chemical vapour deposition. The nonlinear refractive index reaches n(2) = 0.2 x 10(-7) cm(2)/W at the telecommunication wavelength of 1550 nm, which is almost seven orders of magnitude larger than that of the bulk Si material. Additionally, a pump-probe experiment is performed to investigate the ultrafast dynamic process (intraband relaxation time tau(1) = 270 +/- 20 fs; interband relaxation time tau(2) = 3.6 +/- 0.2 ps) of the graphene-Bi2Te3 heterostructure. Then, based on the donor-acceptor structure model, we propose a theoretical model to explain the dynamic relaxation process. Our results show that the graphene-Bi2Te3 heterostructure is a promising saturable absorber for ultrafast pulse laser applications at telecommunication wavelengths. Published by AIP Publishing.