• 文献标题:   The synergistic effect of a graphene nanoplate/Fe3O4@BaTiO3 hybrid and MWCNTs on enhancing broadband electromagnetic interference shielding performance
  • 文献类型:   Article
  • 作  者:   JIN L, ZHAO XM, XU JF, LUO YY, CHEN DQ, CHEN GH
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:   2046-2069
  • 通讯作者地址:   Huaqiao Univ
  • 被引频次:   12
  • DOI:   10.1039/c7ra12909b
  • 出版年:   2018

▎ 摘  要

In this work, methyl vinyl silicone rubber (VMQ) nanocomposites were prepared by solution blending VMQ, a graphene nanoplate/Fe3O4@BaTiO3 hybrid (GFBT) and MWCNTs, aiming to improve the electromagnetic interference (EMI) shielding performance of VMQ. Using the low defect graphene nanoplates (GNPs) as a carrier of Fe3O4@BaTiO3 nanoparticles, the GFBT hybrid was synthesized using a two-step solvothermal method. The micro morphology observed by scanning and transmission electron microscopy (SEM and TEM) showed that Fe3O4 (similar to 200 nm) and BaTiO3 (similar to 20 nm) were successfully loaded over GNPs. The GFBT hybrid and MWCNTs had good dispersion in the as-prepared VMQ/GFBT/ MWCNTs (VGFBTM) nanocomposite. With a loading of 16.1 wt% total filler (GFBT : MWCNTs = 5 : 1), the shielding effectiveness (SE) of the VGFBTM composite ranged from 26.7 to 33.3 dB (> 99.8% attenuation) in a wide frequency range of 1.0-20.0 GHz. A synergistic effect between the GFBT hybrid and MWCNTs provided good dielectric loss and magnetic loss, which played a significant role in improving the electromagnetic interference shielding effectiveness of VMQ. Besides, the electrical conductivity of the VGFBTM nanocomposite was improved compared with VMQ owing to the conducting network structure which was built from two-dimensional GNPs and one-dimensional MWCNTs.