• 文献标题:   Nitrogen-doped or boron-doped twin T-graphene as advanced and reversible hydrogen storage media
  • 文献类型:   Article
  • 作  者:   CHEN F, ZHANG XH, GUAN XN, GAO SL, HAO JB, LI L, YUAN YZ, ZHANG CL, CHEN W, LU PF
  • 作者关键词:   hydrogen storage, dft, twin tgraphene, nitrogen or boron doped
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.apsusc.2023.156895 EA MAR 2023
  • 出版年:   2023

▎ 摘  要

Two-dimensional (2D) carbon-based (C-based) materials can be regarded as potential hydrogen storage media because of their splendid chemical stability and high specific surface area. Recently, a new 2D carbon allotrope twin T-graphene (TTG) with three-atomic layers thick is reported. Motivated by the above exploration, we employed Density Functional Theory (DFT) computational studies to systematically solve twin T-graphene, nitrogen-doped (N-doped) TTG and boron-doped (B-doped) TTG, and evaluate their performance in hydrogen storage at operable thermodynamic conditions. Six hydrogen molecules were adsorbed on the pristine twin Tgraphene, and the hydrogen storage capacity was 7.69 wt%. After N doping and B doping, the twin T-graphene both can adsorb eight hydrogen molecules, and the hydrogen storage capacity was increased to 9.88 wt% and 10.06 wt%, respectively. In addition, we found that the hydrogenation/dehydrogenation (desorption) temperature is predicted to be 241 K. The desorption temperature and desorption capacity of H2 under practical conditions further indicate that it can be used as a reversible hydrogen storage media. This study reveals that twin Tgraphene, N-doped and B-doped twin T-graphene are promising hydrogen storage materials with splendid desorption temperature, ideal adsorption energy and high hydrogen storage capacity. Meanwhile, this research will expand the application of heteroatom-doped carbon-based materials.