• 文献标题:   3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor
  • 文献类型:   Article
  • 作  者:   LIU Y, XIN N, YANG QJ, SHI WD
  • 作者关键词:   hybrid supercapacitor, metalorganic framework, volumetric energy density, gravimetric energy density, znconis nanoarray
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:  
  • 被引频次:   66
  • DOI:   10.1016/j.jcis.2020.08.128
  • 出版年:   2021

▎ 摘  要

With the increasing demand for miniaturization and portable energy storage system, it is an urgent necessary that developing high volumetric energy density supercapacitors with small volumes. Herein, an integrated self-supporting CoZnNiS@CNTs/rGO composite film electrode with the thickness of about 6 lm was designed. In the unique structure, porous CNTs/rGO film is served as conductive substrate to support the CoZn-MOFs derived vertically oriented two-dimensional CoZnNiS nanoarrays. The self-supporting film endows the electrode a high volumetric mass density of 1.28 g cm(-3) and superior electron-ion transport channel, which displays a maximum specific capacitance of 1349.2 F g(-1) as well as high volumetric capacity of 1727.0 F cm(-3) at 1 A g(-1). Besides, a porous film of pure carbon materials (carbon spheres integrated graphene) was designed and used as the negative electrode in supercapacitor. When assembled a hybrid supercapacitor based on the above two self-supporting electrodes, the device delivers up an ultra-high volumetric/gravimetric energy density of 65.2 W h L-1 (60.4 W h kg(-1)) at a power density of 1308 W L-1 (1200 W kg(-1)). Moreover, the asymmetric supercapacitor also displays an ultra-long lifetime with 90.6% retention after 10,000 cycles. These outstanding performances make the CoZnNiS@CNTs/rGO electrode could be a promising candidate for next-generation high volumetric/gravimetric energy density supercapacitors, especially in the limited space. (C) 2020 Elsevier Inc. All rights reserved.