▎ 摘 要
This study fabricated a portable, high-performance, and reagentless electrochemical devices using CO2 laser-scribing process, which allowed localized carbonization of a non-conductive and low-cost polymer platform, i.e., phenolic-paper. The carbonized material was extensively characterized by Raman spectroscopy, XPS, XRD, SEM, and electrochemical impedance spectroscopy. The carbon-based electrodes were obtained from the photothermal process induced by CO2 laser radiation and subsequently subjected to electrochemical treatment to fabricate a functional material with excellent conductivity and low charge-transfer resistance. Additionally, the laser-scribed electrodes presented a porous structure with graphene-like domains, thus indicating both potential for on-site electroanalytical applications and better performance than conventional carbon electrodes. (C) 2019 Elsevier Ltd. All rights reserved.