• 文献标题:   The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
  • 文献类型:   Article
  • 作  者:   RYCEWICZ M, NOSEK A, SHIN DH, FICEK M, BUIJNSTERS JG, BOGDANOWICZ R
  • 作者关键词:   borondoped diamond bdd, nanocrystalline sheet, electrical conductivity, heterojunction, graphene
  • 出版物名称:   DIAMOND RELATED MATERIALS
  • ISSN:   0925-9635 EI 1879-0062
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1016/j.diamond.2022.109225 EA JUL 2022
  • 出版年:   2022

▎ 摘  要

In this paper, the effect of boron doping on the electrical, morphological and structural properties of freestanding nanocrystalline diamond sheets (thickness similar to 1 mu m) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase. The developed boron-doped diamond (BDD) films are a promising semiconducting material for sensing and high-power electronic devices due to band gap engineering and thermal management feasibility. The increased boron concentration in the gas phase induces a decrease in the average grain size, consequently resulting in lower surface roughness. The BDD sheets grown with [B]/[C] of 20,000 ppm reveal the metallic conductivity while the lower doped samples show p-type semiconductor character. The charge transport at mom temperature is dominated by the thermally activated nearest-neighbor hopping between boron acceptors through impurity band conduction. At low temperatures (<300 K), the Arrhenius plot shows a non-linear temperature dependence of the logarithmic conductance pointing towards a crossover towards variable range hopping. The activation energy at high temperatures obtained for lowly-doped sheets is smaller than for nanocrystalline diamond bonded to silicon, while for highly-doped material it is similar. Developed sheets were utilized to fabricate two types of diamond-on-graphene heterojunctions, where boron doping is the key factor for tuning the shape of the current-voltage characteristics. The graphene heterojunction with the low boron concentration diamond sheet resembles a Schottky junction behavior, while an almost Ohmic contact response is recorded with the highly doped BDD sheet of metallic conductivity. The free-standing diamond sheets allow for integration with temperature-sensitive interfaces (i.e. 2D materials or polymers) and pave the way towards flexible electronics devices.