▎ 摘 要
Photo-transformation dominates the fate of graphene oxide (GO) in the environment. However, the photo-transformation mechanisms of GO under different UV bands remain unclear. Our results showed that UV bands played a crucial role in sunlight-induced GO transformation. UVA and UVB induced significant photo-reduction of GO as indicated by decreasing surface O/C ratio, which could be explained by an O-2-independent electron-hole pair-mediated mechanism (Mechanism I), and an O-2-dependent reactive oxygen species (ROS)-mediated reduction mechanism (Mechanism II). Mechanism II accounted for 62.7 % and 33.3 % of total GO photo-transformation under UVA and UVB, respectively. Different from UVA and UVB, UVC led to GO reduction under anaerobic condition via Mechanism I and Mechanism III (direct decarboxylation). However, under aerobic condition, UVC caused significant oxidation of GO, which was the combined effect of Mechanisms I-III and the oxidation of graphitic structure on GO with the assistance of O-2 (Mechanism IV). Moreover, it was demonstrated that the environmental factors (e.g., dissolved organic matter, phosphate) significantly enhanced the photo-transformation of GO in natural water. The information in the present work is useful for better understanding the fate of GO in aquatic environments.