• 文献标题:   Graphene/carbon structured catalyst layer to enhance the performance and durability of the high-temperature proton exchange membrane fuel cells
  • 文献类型:   Article
  • 作  者:   JI ZQ, CHEN JN, GUO ZM, ZHAO ZY, CAI RS, RIGBY MTP, HAIGH SJ, PEREZPAGE M, SHEN YT, HOLMES SM
  • 作者关键词:   high temperature proton exchange nbsp, membrane fuel cell, phosphoric acid los, pt catalyst degradation, accelerated stress test, durability
  • 出版物名称:   JOURNAL OF ENERGY CHEMISTRY
  • ISSN:   2095-4956
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1016/j.jechem.2022.08.004 EA SEP 2022
  • 出版年:   2022

▎ 摘  要

In this study, nitrogen doped electrochemically exfoliated reduced graphene oxide and carbon black sup-ported platinum (Pt/NrEGO2-CB3) has been prepared to enhance the performance and durability of high -temperature PEMFCs with lower Pt loading. On the one hand, Pt/NrEGO2-CB3 with the strong interaction between the Pt and nitrogen (N) prevent agglomeration of Pt particles and Pt particles is 5.46 +/- 1.46 nm, which is smaller than that of 6.78 +/- 1.34 nm in Pt/C. Meanwhile, ECSA of Pt/NrEGO2-CB3 decrease 13.65% after AST, which is much lower than that of 97.99% in Pt/C. On the other hand, the NrEGO flakes in MEAac act as a barrier to mitigate phosphoric acid redistribution, which improves the formation of triple-phase boundaries (TPBs) and gives stable operation of the MEAac with a lower decay rate of 0.02 mV h-1 within 100 h. After steady-state operation, the maximum power density of Pt/NrEGO2-CB3 (0.411 W cm-2) is three times higher than that of conventional Pt/C (0.134 W cm-2) in high-temperature PEMFCs. After AST, the mass transfer resistance of Pt/NrEGO2-CB3 electrode (0.560 c2 cm2) is lower than that in Pt/C (0.728 c2 cm2).(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).