• 文献标题:   Single-layer graphene prevents Cassie-wetting failure of structured hydrophobic surface for efficient condensation
  • 文献类型:   Article
  • 作  者:   PEI JX, LIAO YT, LI Q, SHI K, FU J, HU XJ, HUANG Z, XUE LJ, XIAO X, LIU K
  • 作者关键词:   singlelayer graphene, structured hydrophobic surface, wetting, cassiewetting failure, condensation
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1016/j.jcis.2022.01.157 EA FEB 2022
  • 出版年:   2022

▎ 摘  要

Hypothesis: Structured hydrophobic surfaces often suffer from Cassie-wetting failure due to trapped water in structure gaps for a long-term operation. Sustainable Cassie-wetting on such surface could be achieved by coating an atom-thick and moisture-impermeable graphene on it.Experiments: Water contact angles were measured to clarify the effect of graphene on wetting, and water impermeability was verified by moisture deposition and evaporation. Sliding angle measurements and vapor condensation were carried out to demonstrate the stable Cassie-state wetting and application. Findings: Interestingly we found the graphene does not significantly disrupt the wetting behavior of the structured hydrophobic surface, showing a wettability transparency. Moreover, the impermeability of graphene keeps moisture away from the structure gaps. Owning to the combination of these two properties, droplets on the graphene-coated structured surface exhibit a stable Cassie-state hydrophobic wetting, even under the situation of moisture deposition and evaporation. Using the modified surface, we also found a 40-100% increase in condensation efficiency for a 5-hour vapor condensation at a subcooling of 40 degrees C. These results suggest an effective strategy to prevent Cassie-wetting failure of structured hydrophobic surface and are expected to promote its further application in more complex conditions.(c) 2022 Elsevier Inc. All rights reserved.