• 文献标题:   Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery
  • 文献类型:   Article
  • 作  者:   HAN PX, WANG HB, LIU ZH, CHEN XA, MA W, YAO JH, ZHU YW, CUI GL
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   163
  • DOI:   10.1016/j.carbon.2010.10.022
  • 出版年:   2011

▎ 摘  要

Graphene oxide nanoplatelets (GONPs) are presented as electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery. The structures and electrochemical properties of GONPs treated at different temperatures were investigated by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and cyclic voltammetry. The results indicate that GONPs treated at 50 degrees C (GONP-50) possess highly hydroxylated and carboxylated groups and exhibit an excellent electrocatalytic activity towards VO2+/VO2+ and V2+/V3+ redox couples, while the pristine graphite only shows a reversible electrocatalytic activity towards VO2+/VO2+, suggesting that the V2+/V3+ redox reaction more strongly depends on the oxygen-containing groups attached on graphite surface than does the VO2+/VO2+. With the increase of treatment temperature, the polarization is reduced significantly. GONPs treated at 120 degrees C (GNOP-120) exhibit a lower electrochemical polarization than that of GONP-50 because of relatively higher electrical conductivity despite moderate electrocatalytic activity. The diffusion of VO2+ is faster on the surface of GONP-50 than on the pristine graphite and GNOP-120. (C) 2010 Elsevier Ltd. All rights reserved.