▎ 摘 要
In this paper, the magnetically tunable and enhanced photonic spin Hall effect (PSHE) of reflected light beam at terahertz frequencies is achieved by using a multilayer structure where anisotropic graphene is inserted. This enhanced PSHE phenomenon results from the excitation of surface plasmon polariton (SPP) at the interface between two dielectric materials. By considering the 4x4 transfer matrix method and the quantum response of graphene, the PSHE of the reflected light can be enhanced by harnessing the anisotropic conductivity of graphene. Besides, the PSHE can be tuned through the external magnetic field and structural parameters. This enhanced and tunable PSHE approach is promising for fabricating anisotropic graphene-based terahertz spin devices and other applications in nanophotonics. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement