▎ 摘 要
A general formulation engineering method is adopted in this study to produce a highly concentrated (approximate to 3 mg mL(-1)) inkjet printable starch-graphene ink in aqueous media. Photonic annealing of the starch-graphene ink is validated for rapid post-processing of printed films. The experimental results demonstrate the role of starch as dispersing agent for graphene in water and photonic pulse energy in enhancing the electrical properties of the printed graphene patterns, thus leading to an electrical conductivity of approximate to 2.4 x 10(4) S m(-1). The curing mechanism is discussed based on systematic material studies. The eco-friendly and cost-efficient approach presented in this work is of technical potential for the scalable production and integration of conductive graphene inks for widespread applications in printed and flexible electronics.