▎ 摘 要
A novel flake composite benzenoid-like CuFeO2@reduced graphene oxide (CuFeO2@RGO) was fabricated via a one-step low temperature solvothermal route. The obtained samples were characterized by XRD, FTIR, Raman, SEM, TEM and XPS, which indicated that the hexagonal CuFeO2 nanocrystals sized 150-200nm were well dispersed on the surface of the RGO sheets. For the first time, we applied such CuFeO2@RGO composite as a Fenton-like catalyst in selective oxidation of phenol to dihydroxybenzenes with H2O2 as oxidant. The results showed that the CuFeO2@RGO composite exhibited remarkably enhanced catalytic ability compared with the previously reported CuFe2O4-RGO system. The introduction of RGO in the composite was propitious to increase the specific surface area and promoted the dispersibility of CuFeO2 nanocrystals, as well as the formation of unique hexagonal CuFeO2 with Cu (I) and Fe (III) as the active sites, which synergistically accounted for the enhancement of catalytic activity. Moreover, the stability of the catalyst was investigated. (C) 2016 Elsevier B.V. All rights reserved.