▎ 摘 要
Fabrication of graphene-based transparent conducting films via thermal annealing of graphene oxide (GO) is under consideration for commercial mass production of graphene-based conducting films as an alternative to high-cost metal oxide-based conducting substrates. Conventional thermal annealing, however, comes with some drawbacks, such as high-temperature annealing along with longer process times and structural damage that hinders the applicability of GO as a transparent conductor. Here we report on a method for fabricating reduced GO-based conducting films at a low temperature (800 degrees C) in the presence of ethanol as a carbon source to repair the lattice defects. The total process time is less than 1 h. The results confirm that rapid annealing in an ethanol atmosphere is an effective roll-to-roll method which reduces the thermal load on the device used. It is also found that ethanol plays an important role in repairing the lattice defects, thereby lowering the resistance to a great extent. (C) 2019 The Japan Society of Applied Physics