▎ 摘 要
The paper discusses the numerical model and provides the analysis of a graphene coaxial line suitable for sub-micron sensors and other applications utilized especially in biomedicine. In the wider perspective, the areas and disciplines targeted by the presented concept include biology, medicine, prosthetics, and microscopic solutions for modern actuators or SMART elements. The proposed hybrid numerical model is based on analyzing a periodic structure with high repeatability, and it exploits the conception of a graphene polymer having its basic dimension in nanometers. The model simulates both the transient analysis and the actual random motion of an electric charge in the structure as the source of spurious signals, and it also considers the harmonic signal propagation along the structure; moreover, the model examines whether and how the signal will be distorted at the beginning of the modeled electric line, given the various termination versions. The results of the analysis are necessary for further use of the designed sensing devices based on graphene structures.