• 文献标题:   Redox-active engineered holey reduced graphene oxide films for K+ storage
  • 文献类型:   Article
  • 作  者:   XU YL, FAN BB, LIU Z, HUANG C, HU AP, TANG QL, ZHANG SY, DENG WN, CHEN XH
  • 作者关键词:   freestanding electrode, oxygen functional group, holey, potassiumion batterie
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:  
  • 被引频次:   11
  • DOI:   10.1016/j.carbon.2020.12.034
  • 出版年:   2021

▎ 摘  要

Graphene film is promising candidate as free-standing electrodes for potassium-ion batteries (KIBs) owing to its intrinsic nature of mechanical strength and high electrical conductivity. However, its performance is usually restricted by the tightly stacked structure and sluggish insertion/deinsertion K storage mechanism. Herein, a redox-active engineered holey reduced graphene oxide (HRGO) film anode was prepared by using the carboxylic acid functionalized polystyrene (PS-COOH) spheres as the template. The holey ion diffusion network channels and the oxygen functional groups can be optimized during the PS-COOH spheres decomposition process, which largely promote the enhancement of electrochemical performance because the oxygen functional groups can serve as the surface-redox sites increasing surface-driven reactions and holey channels provide more ion-accessible area for K-ion storage. Moreover, the reduction degree of graphene oxide also be simply tuned by changing the annealing temperature, which can improve the K+ bulk intercalation reaction. As a result, the optimized HRGO-900 (HRGO sample obtained at 900 degrees C) films exhibits a superior areal capacity (0.80 mAh cm(-2) at 0.1 mA cm(-2)). The electrode design and construction strategies can be effectively applied in other 2D materials, which exhibits practical applications in energy storage devices. (C) 2020 Elsevier Ltd. All rights reserved.