▎ 摘 要
Actuators with fast and precise controllable responses are highly in demand for implementing agilely accurate mechanical movements in smart robots, intelligent sensors, biomimetic devices, and so on. Here, we report a graphene-based moisture actuator with accurately controllable direction and position responses achieved by a fast, controlled, and even programmable one-step laser reduction method. The laser reduction-induced oriented microstructures help to precisely guide the direction and location of the moisture response in graphene-based Janus films. The excellent moisture-mechanical response behaviors in these novel moisture actuators originate from the Janus structures and the periodic microstructures of a line-scanned layer. Our customized complex intelligent devices such as drums, bands, and three-dimensional wave humidity drives can highly match and verify the finite element simulations, which will inspire the creation of further smart robot designs for accurate deformation.