• 文献标题:   Structure and Properties of Polymer Nanocomposite Films With Carbon Nanotubes and Graphene
  • 文献类型:   Article
  • 作  者:   RADMILOVIC VV, CARRARO C, USKOKOVIC PS, RADMILOVIC VR
  • 作者关键词:  
  • 出版物名称:   POLYMER COMPOSITES
  • ISSN:   0272-8397 EI 1548-0569
  • 通讯作者地址:   Univ Belgrade
  • 被引频次:   4
  • DOI:   10.1002/pc.24079
  • 出版年:   2017

▎ 摘  要

In this report, we demonstrate a simple fabrication route for polyvinyl butyral (PVB)-based nanocomposites with carbon nanotubes and graphene. In spite of insufficient percolation threshold due to low concentration of carbonaceous nanofillers, in the amount of 1 wt%, significant improvement of electrical and mechanical properties with negligible deterioration of optical properties for the polymer PVB matrix can be achieved. Both hardness and modulus increase and electrical resistivity and transmittance decrease in this order: PVB + multi-wall carbon nanotubes (MWCNT) double right arrow PVB+single-wall carbon nanotubes (SWCNT) double right arrow PVB + graphene. The largest values of reduced modulus and hardness are observed for the PVB + graphene nanocomposite, obtained by nanoindentation. Transmittance is similar to 84%, 86%, 89%, and 91% at 370 nm, and at 550 nm is similar to 84%, 88%, 90%, and 92%, for PVB + graphene, PVB+MWCNT, PVB + SWCNT, and pure PVB, respectively. The highest resistivity of 4 x 10(4) Omega cm is exhibited by the PVB + MWCNT nanocomposite while the lowest, 1.9 x 10(3) Omega cm, is exhibited by the PVB + graphene. Nanocomposite films are fabricated by a simple processing route using ultrasonic mixing and spin coating. (C) 2016 Society of Plastics Engineers